Restriction and Compensation


In the following paragraphs, the term "bearing" is used to explain the concept of "restriction and compensation".  However, it is important to understand that, New-Seal technology is based on gas bearing technology.  In fact, the faces of New-Seals will act as both an aerostatic seal and an aerostatic bearing, simultaneously.  In any event, in the following paragraphs, only the term "bearing" is used.  


Externally pressurized gas bearings are also called aerostatic bearings, as they provide lift even at zero rpm. Although they do not have fine pumping groves like dynamic bearings, they do require some type of restriction for metering the gas into the gap. Air pressure is introduced directly between the bearing surfaces though precision holes, orifices, grooves, steps or porous compensation techniques. It is this process of restriction referred to as compensation that is key, but is not yet well appreciated.


Compensation enables bearing faces to run very close together without touching, because the closer they get together, the higher the gas pressure between them gets, repelling the faces apart.  Under a flat gas bearing the average pressure in the gap will equal the total load on the bearing divided by the face area. That is the unit loading. So if the source gas pressure is 100 psi and the seal face has 10 sq. in of area and there is 600 lbs. of load, there will be an average of 60 psi in the bearing gap. Because there is a restrictor of some type just before the gap, if the load increases to 700lbs, the bearing gap reduces, chocking flow in the gap and so the restrictor can let the average pressure in the gap will increase to 70 psi.

Out of all the compensation techniques, orifice compensation is the most popular or widely used. Orifice compensation typically uses precisely sized orifices that are strategically placed on the bearing face and often combined with grooves to distribute the pressurized air across the bearing face. However, if the bearing face becomes scratched across a groove or near an orifice, the volume of air that escapes through the scratch may well be more than the orifice can supply, causing the bearing faces to contact or crash. Orifice bearings also can be plagued by contamination plugging the orifice and starving the face for pressure and flow. Orifices are typically 100 to 250 µm (0.004 to 0.010 in.) in diameter and so can be readily plugged by Teflon tape or material sloughing off of the inside of the tube or some other particulate contamination.

Finally orifice bearings experience collapse at very small gaps. As the face of the bearing gets closer to the guide surface, the inflow around the feed hole becomes choked and is not enough to provide pressure and flow for the rest of the face. This collapse can be seen in reverse during initial lift off. By slowly increasing the supply air pressure from “0” to an orifice bearing that is grounded by a load, it can be seen that a high percentage of the supply pressure is needed before the bearing will pop up as flow is established across the face of the bearing. This is because a flat orifice bearing on flat surface has only the area of orifices and grooves to establish initial lift (Figure 1).



Figure 1 - This is a cutaway side view of a typical orifice air bearing found in a coordinate measuring machine (CMM). If a pneumatic system is to be considered an “air or gas bearing,” it needs to have a restriction upstream of the bearing gap restricti


There is a more elegant method for providing this compensation. The ideal air bearing design would supply pressure equally across the whole face of the bearing and automatically restrict and dampen the flow of air to the face at the same time. This can be achieved by diffusing air through a porous bearing or seal face, we often use graphite (Figure 2). The stability of porous media compensation is due to the damping effect from the torturous passageways the gas must flow through to reach the face. This damping effect makes it difficult for the volume of air in the gap to change quickly, resulting in a naturally stable gas film that cannot be plugged by particulates. As even with the supply tubes and/or ports completely full of particulates (sand, dust, etc.), it still does not create as much restriction as the porous media itself. In the case there is contact, graphite is an excellent plain bearing material.



Figure 2 - When air pressure bleeds evenly from the entire surface area of the face, the whole surface area develops pressure even when grounded. Orifice bearings have only the area of the orifices and any groves for the pressure to establish initial lift


This also works well for very small gaps and so small flows. With porous bearings, a low initial lift is achieved with a low percentage of supply pressure, and the gap increases with increasing supply pressure. This is because the whole face contributes to lift, much like the exposed area of a hydraulic cylinder, as again illustrated in Figure 2. This makes porous bearings easier to use then orifice bearings



Figure 3 - It is well known in the dry gas seal industry that small air gaps have very high stiffness. Since flow through a gap is a cubed function of the gap, small gaps are great for reducing flows. Porous compensation in gas bearing technology has show



Source for this page: Turbomachinery International, "Scoping Don Bently's bearing concept" by Drew Devitt, 27 October 2016

New-SealTM    Ph. (888) 891-5519



New-SealTM is owned by New Way Air Bearings®

Print Print | Sitemap
© 2017 New Way Air Bearings